Your 2014 Drinking Water Quality Report Since 1990, California public water utilities have been providing an annual Drinking Water Quality Report to their customers. **This year's report covers all drinking water quality testing performed in calendar year 2013.** The City of Huntington Beach Public Works Utilities Division vigilantly safeguards your water supply and, as in years past, the water delivered to your home or business meets all drinking water quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks, but do not have drinking water standards. In addition, the Orange County Water District (OCWD), which manages the groundwater basin, and the Metropolitan Water District of Southern California (MWDSC), which supplies imported treated surface water to the City, test for unregulated chemicals in our water supplies. Monitoring for unregulated chemicals helps USEPA and CDPH determine where certain chemicals occur and whether new standards need to be established for those chemicals in order to protect public health. Your drinking water is constantly monitored from source to tap for regulated and unregulated constituents through drinking water quality testing programs carried out by OCWD for groundwater, MWDSC for treated surface water and the Huntington Beach Public Works Utilities Division for groundwater wells, reservoirs, and distribution system. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, may be more than one year old. # The Quality of Your Water is Our Primary Concern # Sources of Supply Orange County's water supplies are a blend of groundwater provided by OCWD and water imported from Northern California and the Colorado River by the Municipal Water District of Orange County (MWDOC) via MWDSC. Groundwater comes from a natural underground aquifer that is replenished with water from the Santa Ana River, local rainfall, OCWD's Groundwater Replenishment System, and imported water. The groundwater basin is 350 square miles and lies beneath north and central Orange County from Irvine to the Los Angeles County border and from Yorba Linda to the Pacific Ocean. More than 20 cities and retail water districts draw from the basin to provide water to homes and businesses. In 2013, the City of Huntington Beach water consisted of 70% local groundwater and 30% imported treated surface water. The City operates 10 groundwater wells and 3 imported surface water connections. Huntington Beach also has emergency water connections with the neighboring cities of Fountain Valley, Seal Beach, and # Orange County's Water Future For years, Orange County has enjoyed an abundant, seemingly endless supply of high-quality water. However, as water demand continues to increase statewide, we must be even more conscientious about our water supply and maximize the efficient use of this precious natural resource. OCWD and MWDOC work cooperatively to evaluate new and innovative water management and supply development programs, including water reuse and recycling, wetlands expansion, recharge facility construction, ocean and brackish water desalination, surface and underground storage, and water use efficiency programs. These efforts are helping to enhance long-term countywide water reliability and water quality. A healthy water future for Orange County rests on finding and developing new water supplies, as well as protecting and improving the quality of the water that we have today. Your local and regional water agencies are committed to making the necessary investments today in new water supply and management projects to ensure an abundant and high-quality water supply for our future. # Basic Information About Drinking Water Contaminants The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land, or through the layers of the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - **Pesticides and herbicides** may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. - Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming. - Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems. - Radioactive contaminants can be naturally occurring or the result of oil and gas production or mining activities. In order to ensure that tap water is safe to drink, USEPA and the CDPH prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. ### Fluoridation Fluoride occurs naturally in Huntington Beach's water supplies. In addition to the natural levels, the City adds a small amount of fluoride to the water to promote dental benefits per a majority vote of the community during the early 1970s. Fluoridation's primary benefit is to help prevent tooth decay in children. Because of the dramatic health benefits of fluoridating drinking water, a 1997 Assembly Bill of the State of California mandated all large system water suppliers to begin fluoridating their systems. The City's water is fluoridated to the California Department of Public Health optimal levels within a range of 0.7 to 1.3 parts per million (ppm). For additional information about the fluoridation of drinking water, please visit: #### **U.S. Centers for Disease Control and Prevention:** www.cdc.gov/fluoridation/ **California Department of Public Health:** www.cdph.ca.gov/certlic/drinkingwater/Pages/Fluoridation.aspx American Water Works Association: www.awwa.org # Conservation Tips for Inside Your Home Wash only full loads of laundry and dishes Saves up to 50 gallons per week Fix household leaks promptly **Saves up to 20 gallons per day** Spend only 5 minutes in the shower #### Saves up to 8 gallons each time Turn off the water while you brush your teeth Saves up to 2.5 gallons per minute Buy water-saving devices like high-efficiency toilets and clothes washers. You'll save many gallons of water per day, and many of them are eligible for rebates. To learn more, check on www.bewaterwise.com. Talk to your family and friends about saving water. If everyone does a little, we all benefit a lot. ### Questions about your water? Contact us for answers. For information or concerns about this report, or your water quality in general, please contact Derek Smith or Jon Erickson at (714) 536-5921, or send an e-mail to dsmith@surfcity-hb.org. You may also address your concerns at the regularly scheduled City Council Meetings held at City Hall at 2000 Main Street in Huntington Beach on the first and third Mondays of each month at 6:00 pm in the City Hall Council Chambers, or at the monthly Public Works Commission meeting on the third Wednesday of every month at 5:00 pm (refer to the City website — www.huntingtonbeachca.gov/ — for location). Please feel free to participate in these meetings. The City firmly believes in the public's right to know as much as possible about the quality of their drinking water and the health of their aquifer. Your input and concerns are very important to us. For more information about the health effects of the listed contaminants in the following tables, call the USEPA hotline at (800) 426-4791. # Important Information the EPA Would Like You to Know # Issues in Water Quality that Could Affect Your Health # Immuno-Compromised People Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are undergoing chemotherapy, persons who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. # Cryptosporidium Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human wastes and may be in surface water. MWDSC tested their source water and treated surface water for Cryptosporidium in 2013 but did not detect it. If it is ever detected, Cryptosporidium is eliminated by an effective treatment combination including sedimentation, filtration and disinfection. The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791 Drinking water standards established by USEPA and CDPH set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards: - Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. - Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. - Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water. - Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements. - Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow. #### **How are Contaminants Measured?** Water is sampled and tested throughout the year. Contaminants are measured in: - parts per million (ppm) or milligrams per liter (mg/L) - parts per billion (ppb) or micrograms per liter ($\mu g/L$) - parts per trillion (ppt) or nanograms per liter (ng/L) #### What is a Water Quality Goal? In addition to mandatory water quality standards, USEPA and CDPH have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals: - Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA. - Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. - Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Vanadium, Total (ppb) between 7 a.m. to 1 p.m. Pacific Time, or visit them on the web at www.epa.gov/drink. ### Chloramines Huntington Beach imports water from MWDSC which produces water that is treated with chloramines, a combination of chlorine and ammonia, as its drinking water disinfectant. Chloramines are effective killers of bacteria and other microorganisms that may cause disease. Chloramines form fewer disinfection by-products and have no odor when used properly. People who use kidney dialysis machines may want to take special precautions and consult their physician for the appropriate type of water treatment. Customers who maintain fish ponds, tanks or aquaria should also make necessary adjustments in water quality treatment, as chloramines are toxic to fish. For further information please visit www.epa.gov/safewater/disinfection/chloramine. # Disinfectants and Disinfection Byproducts Disinfection of drinking water was one of the major public health advances in the 20th century. Disinfection was a major factor in reducing waterborne disease epidemics caused by pathogenic bacteria and viruses, and 2013 # 2013 City of Huntington Beach Drinking Water Quality Local Groundwater and Metropolitan Water District Treated Surface Water | Chemical | MCL | PHG A | Avg. Groundwater
Amount | Avg. Imported
MWD Amount | Range of Detections | MCL
Violation? | Typical Source of Contaminant | |---|--|----------|----------------------------|-----------------------------|---------------------|-------------------|---| | Radiologicals – Tested in 2 | | <u> </u> | | | | | | | Alpha Radiation (pCi/L) | 15 | (0) | ND | 3.0 | ND - 3.0 | No | Erosion of Natural Deposits | | Beta Radiation (pCi/L) | 50 | (0) | NR | ND | ND - 4.0 | No | Decay of Man-made or Natural Deposits | | Uranium (pCi/L) | 20 | 0.43 | 3.6 | 2.0 | 1.5 – 8.0 | No | Erosion of Natural Deposits | | Inorganic Chemicals – Test | ed in 2013 | | | | | | | | Aluminum (ppm) | 1 | 0.6 | ND | 0.16 | ND - 0.23 | No | Treatment Process Residue, Natural Deposits | | Arsenic (ppb) | 10 | 0.004 | <2.0 | 2 | ND - 2.4 | No | Erosion of Natural Deposits | | Fluoride (ppm) naturally-occurring | | 1 | 0.38 | NR | 0.26 - 0.44 | No | Erosion of Natural Deposits | | Fluoride (ppm) treatment-related | | | See Footnote (1) | 0.8 | 0.7 – 1 | No | Water Additive for Dental Health | | | Optimal Level | | | | | | | | Nitrate as NO ₃ (ppm) | 45 | 45 | 1.5 | 1.8 | ND – 6.1 | No | Agriculture Runoff and Sewage | | Nitrate and Nitrite as N (ppm) | 10 | 10 | <0.4 | 0.4 | ND - 1.4 | No | Agriculture Runoff and Sewage | | Secondary Standards* – Te | rate and Nitrite as N (ppm) 10 10 <0.4 0.4 ND - 1.4 No Agriculture Runoff and Sewage condary Standards* - Tested in 2013 uminum (ppb) 200* 600 ND 160 ND - 230 No Treatment Process Residue, Natural Deposits loride (ppm) 500* n/a 63 86 18 - 122 No Runoff or Leaching from Natural Deposits | | | | | | | | Aluminum (ppb) | 200* | 600 | ND | 160 | ND - 230 | No | Treatment Process Residue, Natural Deposits | | Chloride (ppm) | | n/a | 63 | 86 | 18 – 122 | No | Runoff or Leaching from Natural Deposits | | Color (color units) | 15* | n/a | 1.0 | 1.0 | ND - 7.0 | No | Runoff or Leaching from Natural Deposits | | Odor (odor units) | 3* | n/a | <1.0 | 3.0 | ND - 16 | No | Naturally-occurring Organic Materials | | Specific Conductance (µmho/cm) | 1,600* | n/a | 577 | 890 | 403 - 900 | No | Substances That Form Ions in Water | | Sulfate (ppm) | 500* | n/a | 73 | 190 | 29 – 200 | No | Runoff or Leaching from Natural Deposits | | Total Dissolved Solids (ppm) | 1,000* | n/a | 387 | 540 | 246 – 628 | No | Runoff or Leaching from Natural Deposits | | Turbidity (NTU) | 5* | n/a | 0.13 | ND | ND - 1.0 | No | Runoff or Leaching from Natural Deposits | | Unregulated Chemicals – Tested in 2013 | | | | | | | | | Alkalinity, total (ppm as CaCO ₃) | Not Regulated | n/a | 163 | 110 | 93 – 210 | n/a | Runoff or Leaching from Natural Deposits | | Boron (ppm) | NL = 1 | n/a | <0.1 | 0.14 | ND - 0.14 | n/a | Runoff or Leaching from Natural Deposits | | Calcium (ppm) | Not Regulated | n/a | 71 | 60 | 31 – 143 | n/a | Runoff or Leaching from Natural Deposits | | 1,4-Dioxane (ppb) | NL = 1 | n/a | <1.0 | ND | ND - 1.7 | n/a | Industrial Waste Discharge | | Hardness, total (ppm) | Not Regulated | | 228 | 250 | 91 – 453 | n/a | Runoff or Leaching from Natural Deposits | | Hardness, total (grains/gal) | Not Regulated | n/a | 13 | 15 | 5.3 – 26 | n/a | Runoff or Leaching from Natural Deposits | | Magnesium (ppm) | Not Regulated | | 11 | 22 | 2.3 – 23 | n/a | Runoff or Leaching from Natural Deposits | | pH (pH units) | Not Regulated | | 8.0 | 8.1 | 7.9 – 8.1 | n/a | Hydrogen Ion Concentration | | Potassium (ppm) | Not Regulated | | 2.9 | 4.2 | 2.0 - 4.8 | n/a | Runoff or Leaching from Natural Deposits | | Sodium (ppm) | Not Regulated | | 48 | 84 | 36 – 87 | n/a | Runoff or Leaching from Natural Deposits | | Total Organic Carbon (ppm) | Not Regulated | TT | <0.30 | 2.5 | ND - 2.7 | n/a | Various Natural and Man-made Sources | | Vanadium (ppb) | NL = 50 | n/a | <3.0 | ND | ND – 11 | n/a | Runoff or Leaching from Natural Deposits | ppb = parts-per-billion; ppm = parts-per-million; ppt = parts-per-trillion; pCi/L = picoCuries per liter; NTU = nephelometric turbidity units; pmho/cm = micromhos per centimeter; NR = not required to be analyzed; ND = not detected; NL = Notification Level; = average is less than the detection limit for reporting purposes; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; n/a = not applicable; TT = treatment technique *Contaminant is regulated by a secondary standard. (1) The City of Huntington Beach and the Metropolitan Water District of Southern California add fluoride to the naturally-occurring levels in order to help prevent dental cavities. The fluoride level in the treated water is maintained within an optimal range of 0.7 ppm to 1.3 ppm as required by the California Department of Public Health regulations. | Turbidity – combined filter effluent
Metropolitan Water District Diemer Filtration Plant | Treatment
Technique | Turbidity
Measurements | TT
Violation? | Typical Source
of Contaminant | |---|------------------------|---------------------------|------------------|----------------------------------| | 1) Highest single turbidity measurement | 0.3 NTU | 0.06 | No | Soil Runoff | | 2) Percentage of samples less than 0.3 NTU | 95% | 100% | No | Soil Runoff | Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly. #### **Unregulated Chemicals Requiring Monitoring Notification** Average Range of **Most Recent** PHG Chlorate (ppb) 41 – 68 Chromium, Hexavalent (ppb) 0.02 0.03 -0.11 2013 n/a Chromium, Total (ppb) <0.2 ND - 0.5 2013 Molybdenum, Total (ppb 4.7 4.5 – 5 2013 n/a n/a 854 – 1,070 Strontium, Total (ppb) 931 2013 n/a it remains an essential part of drinking water treatment today. Chlorine disinfection has almost completely eliminated the risks of microbial waterborne diseases from our lives. Chlorine is added to your drinking water at the source of supply (groundwater well or surface water treatment plant). Enough chlorine is added so that it does not completely dissipate through the distribution system pipes. This "residual" chlorine helps to prevent the growth of bacteria in the pipes that carry drinking water from the source into your home. However, chlorine can react with naturally-occurring materials in the water to form unintended chemical byproducts, called disinfection byproducts (DBPs), which may pose health risks. A major challenge is how to balance the risks from microbial pathogens and DBPs. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks from disinfection byproducts. The Safe Drinking Water Act requires the USEPA to develop rules to achieve these goals. Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the most common and most studied DBPs found in drinking water treated with chlorine. In 1979, the USEPA set the maximum amount of total THMs allowed in drinking water at 100 parts per billion as an #### Want Additional Information? Odor (threshold odor number) Turbidity (NTU) There's a wealth of information on the internet about Drinking Water Quality and water issues in general. A good place to begin your own research is the City of Huntington Beach website: www.ci.huntington-beach.ca.us. In addition to extensive information about your local water and the support and services we offer, you'll find links for many other local, statewide, and national resources. annual running average. In January 2002, the Stage 1 Disinfectants / Disinfection Byproducts Rule lowered the total THM maximum annual average level to 80 parts per billion and added HAAs to the list of regulated chemicals in drinking water. Your drinking water complies with the Stage 1 Disinfectants / Disinfection Byproducts Rule. Stage 2 of the regulation was finalized by USEPA in 2006, which further controls allowable levels of DBPs in drinking water without compromising disinfection itself. A required distribution system evaluation was completed in 2008 and a Stage 2 monitoring plan has been approved by CDPH. Full Stage 2 compliance began # About Lead in Tap Water If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Huntington Beach Utility Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 between 6 a.m. to 2 p.m. Pacific Time, or visit them on the web at www.epa.gov/safewater/lead. Nο No Naturally-occuring Organic Materials Erosion of natural deposits # Conservation Tips for Outside Your Home **Huntington Beach Permanent** Water Conservation Requirements (M.C. 14.18.050) - Irrigation is prohibited between 9 am and 5 pm, and limited to no more than 3 days per week - No excessive water flow or water runoff is permitted - · Repair leaks, breaks and malfunctions promptly Water your lawn 1 to 2 days a week instead of 5 days a week. Apply the Soak-and-Cycle function. Saves up to 840 gallons per week. Check your sprinkler system monthly for leaks, overspray and broken sprinkler heads. Saves up to 500 gallons per month. Please use a broom instead of a hose to clean driveways and sidewalks. Saves up to 150 gallons each time Water your plants in the early morning or evening to reduce evaporation and water loss. The wind and the sun can waste up to 80% of your irrigation water. Consider replacing your lawn with drought tolerant plants, synthetic turf, or permeable hardscape. Install rotating sprinkler nozzles, a weather-based irrigation controller, or drip irrigation to enhance your water efficiency. Rebates are available for water efficient landscape devices and turf removal. Add 3-4" of mulch to cover the soil and retain moisture. For further water conservation tips, rebate information, water efficient practices and free landscaping classes please visit www.huntingtonbeachca.gov/hbwater or www.bewaterwise.com #### 2013 City of Huntington Beach Distribution System Water Quality Disinfection MCL Average Range of MCL **Typical Source** (MRDL/MRDLG) Amount Violation? of Contaminant Total Trihalomethanes (ppb) 80 57 17 – 54 No Byproducts of chlorine disinfection Haloacetic Acids (ppb) 60 20 2 - 25 Byproducts of chlorine disinfection No Chlorine Residual (ppm) (4 / 4) 0.91 0.01 - 2.18 Disinfectant added for treatment No **Aesthetic Quality** Color (color units) 15' ND - 5<5 No Erosion of natural deposits 1.0 - 2.0 ND - 0.72 Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; six locations are tested weekly for color, odor, and turbidity MRDL = Maximum Residual Disinfectant Level Goal; NTU = nephelometric turbidity units; ND = not detected * Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color). | Bacterial Quality | MCL | MCLG | Highest Monthly
Positive Samples | MCL
Violation? | Typical Source
of Contaminant | |-------------------------|-----|------|-------------------------------------|-------------------|--------------------------------------| | Total Coliform Bacteria | 5% | 0 | 0.61% | No | Naturally Present in the Environment | No more than 5% of the monthly samples may be positive for total coliform bacteria nce of 2 consecutive total coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation 3, #### Lead and Copper Action Levels at Residential Taps **Action Level** Health 90th Percentile Sites Exceeding AL / **Typical Source** Violation? (AL) Goal **Number of Sites** of Contaminant Value ND 0 out of 63 Corrosion of household plumbing Lead (ppb) 0.2 Nο Copper (ppm) 0.3 0.33 1 out of 63 Nο Corrosion of household plumbing Every three years, at least 50 selected residences are tested for lead and copper at-the-tap. The most recent set of 63 samples was collected in 2012 Lead was detected in 5 homes, none of which exceeded the regulatory lead action level (AL). Copper was detected in 47 samples, one of which exceeded the copper AL A regulatory action level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow | Unregulated Chemicals Requiring Monitoring | | | | | | | |--|-----------------------|------|-------------------|------------------------|-------------------------------|--| | Chemical | Notification
Level | PHG | Average
Amount | Range of
Detections | Most Recent
Sampling Dates | | | Chlorate (ppb) | 800 | n/a | <20 | ND - 38 | 2013 | | | Chromium, Hexavalent (ppb) | n/a | 0.02 | 0.09 | 0.07 - 0.12 | 2013 | | | Molybdenum, Total (ppb) | n/a | n/a | 4.8 | 4.6 - 5.3 | 2013 | | | Strontium, Total (ppb) | n/a | n/a | 660 | 556 – 781 | 2013 | | | Vanadium, Total (ppb) | 50 | n/a | 1.8 | 1.4 – 2.2 | 2013 | | # Source Water Assessments Imported (MWDSC) Water Assessment Every five years, MWDSC is required by CDPH to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. In 2012, MWDSC submitted to CDPH its updated Watershed Sanitary Surveys for the Colorado River and State Water Project, which include suggestions for how to better protect these source waters. Both source waters are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires, and other watershed-related factors that could affect water quality Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (213) 217-6850. #### Groundwater Assessment An assessment of the groundwater sources for Huntington Beach was completed in December, 2002. The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: dry cleaners, electrical/electronic manufacturing, gas stations, known contaminant plumes, metal plating, finishing, or fabricating, military installations and plastics/ synthetics producers. You may request a summary of the assessment by contacting Brian Ragland, the City's Utilities Manager, at (714) 536-5921. #### It's official: California is in a drought. 2013 was the driest year on record, and as dry conditions continue, some regions throughout the state are being severely impacted. On January 17, 2014, Governor Brown declared a drought emergency and asked that all Californians voluntarily reduce their water use by 20%. While there is no immediate danger of water supply interruptions here in Orange County, we must use our water supplies as efficiently as possible because we don't know how long the drought will last. Southern California is well-prepared and in better shape than many of those in other parts of the state because we made investments for dry periods like this. Over the past 20 years, we have invested more than \$15 billion in water storage and infrastructure improvements that will help sustain us now, and will help ensure reliability in the future. The drought is a serious reminder that we must continue to invest in water infrastructure and reliability projects. This report contains important information about your drinking water. Translate it, or speak with someone who understands it. Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Customer Service Representative. Telefono: (714) 536-5921. ### **City of Huntington Beach** Public Works Utilities Division 2000 Main Street Huntington Beach, California 92648 PRESORT STD U.S. Postage **PAID** Santa Ana, CA Permit No. 1 **CRRT SORT** #### **POSTAL CUSTOMER** Cover photo courtesy of Visit Huntington Beach – Surf City USA www.surfcityusa.com